If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-6=0
a = 3; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·3·(-6)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*3}=\frac{0-6\sqrt{2}}{6} =-\frac{6\sqrt{2}}{6} =-\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*3}=\frac{0+6\sqrt{2}}{6} =\frac{6\sqrt{2}}{6} =\sqrt{2} $
| 5X+8=32-x | | 2x²+0.5=0 | | 10x+33=8X+41 | | 9-3(x+4)=15 | | 15y+17=27 | | y+35+35=140 | | |5x-10|=45. | | V(x)=x(10-2x)x(14-2x) | | 4y–8=20 | | 6*52/8=4x | | -5.2t^2+72.3t+45=0 | | 4•(x+7)=2(3x+13) | | 10y+5y-20=180 | | 6=-16t^2+12t+40 | | 7y+4y+92=180 | | -16t^2+96.4t+80=0 | | 3n=18=6 | | 3n=186 | | 7x+8x-5(3x+2)=15x | | 12x+3+7x-x=21x | | 3=3t-0.5t^2 | | 8x=512x= | | 10y-200=0-80 | | x2-3x+5x=3 | | -6=3x9 | | .36.3÷y=12.1;2,3,4 | | 6x+4(3x-5)=2 | | 7z-4=10 | | 36y-7=100 | | 39y-7=100 | | 6y-7=100 | | 3x/4-2x=7 |